

Decision Trees & Utility Theory

Michael C. Runge
USGS Patuxent Wildlife Research Center

Advanced SDM Practicum NCTC, 12-16 March 2012

Motivation: Risk

Outline

- Decision trees
- Utility curves
- Eliciting utility curves
- Utility functions
- Multi-attribute utility
- Cognitive challenges
- A few other thoughts...

Control Burn?

Wet Year?

Wild Fire?

Control Burn? Wet Year?

Control Burn? Wet Year?

Control Burn?

Roll-back Method: Start at right EV at chance nodes Best at choice nodes Move left until done

Does EV capture values?

Game 1: \$14.50 Game 2: \$50.00

Which do you choose?

Expected Value

- The expected value criterion
 - Assumes a long-run average
 - Assumes a linear value function
 - Focuses on only a single attribute
- But maybe...
 - We make repeated decisions in our life...

Risk Attitude

- Consider the following wager
 - Win \$500 with prob 0.5, or lose \$500 with prob 0.5
 - Would you pay to get out of this wager? How much?
 - Would you pay to get into this wager? How much?
- A classic risk decision

Risk Attitude

Risk-averse

- You would trade a gamble for a sure amount that is less than the expected value of the gamble
- E.g., buying insurance

Risk-seeking

- You would trade a sure amount for a gamble that has a smaller expected value (but the chance of a larger payout)
- E.g., buying lottery tickets

Decision Tree

Utility

Risk-averse Utility

Properties of Utility Functions

- Monotonic vs. peaked
- Risk tolerance
 - Averse, neutral, seeking
 - Mixed
- Constant vs. declining aversion

Eliciting Utilities

- Elicitation methods center around gamble choices
 - Notation: [x, α, y] R w
 - The choice is between a sure return of w or gamble that returns x with probability α or y with probability $1-\alpha$
 - R is the preference relation (>, ≺, or ~)
- Lottery diagram

Methods of Elicitation

- Preference comparison
 - $[x_i, \alpha_i, y_i] R_i W_i$
- Probability equivalence
 - $[X_{n+1}, \alpha_i, X_0] \sim X_i$
- Value equivalence
- Certainty equivalence
 - $[x_*, 0.5, x_0] \sim x_1, [x_1, x_0] \sim x_2, [x_*, x_1] \sim x_3, \dots$

W	-10,000	0	10,000	30,000	60,000
α					
u(w)	0.0				1.0

W	-10,000	0	10,000	30,000	60,000
α				0.85	
u(w)	0.0				1.0

W	-10,000	0	10,000	30,000	60,000
α			0.60	0.85	
u(w)	0.0				1.0

W	-10,000	0	10,000	30,000	60,000
α		0.35	0.60	0.85	
u(w)	0.0				1.0

W	-10,000	0	10,000	30,000	60,000
α		0.35	0.60	0.85	
u(w)	0.0	0.35	0.60	0.85	1.0

Utility Curve

X	60,000			
У	-10,000			
W	<i>W</i> ₁			
u(w)				

$$u(w_1) = 0.5u(60,000) + (1 - 0.5)u(-10,000)$$

= 0.5(1.0) + 0.5(0.0) = 0.5

X	60,000	w ₁			
У	-10,000	-10,000			
W	W_1	W_2			
u(w)	0.5				

X	60,000	w ₁	60,000	60,000	W ₃	W ₁	W ₂
У	-10,000	-10,000	w ₁	W ₃	w ₁	W ₂	-10,000
W	W_1	W_2	W_3				
u(w)	0.5	0.25	0.75				

$$u(w_3) = 0.5u(60,000) + (1 - 0.5)u(w_1)$$

= $0.5(1.0) + 0.5(0.5) = 0.75$

X	60,000	w ₁	60,000	60,000	W ₃	w ₁	W ₂
У	-10,000	-10,000	w ₁	W ₃	w ₁	W ₂	-10,000
W	W_1	W_2	W_3				
u(w)	0.5	0.25	0.75	0.875	0.625	0.375	0.125

X	60,000	8,000	60,000	60,000	W ₃	8,000	W ₂
У	-10,000	-10,000	8,000	<i>W</i> ₃	8,000	W ₂	-10,000
W	8,000	W_2	<i>W</i> ₃				
u(w)	0.5	0.25	0.75	0.875	0.625	0.375	0.125

X	60,000	8,000	60,000	60,000	W ₃	8,000	2,000
У	-10,000	-10,000	8,000	W ₃	8,000	2,000	-10,000
W	8,000	-2,000	<i>W</i> ₃				
u(w)	0.5	0.25	0.75	0.875	0.625	0.375	0.125

X	60,000	8,000	60,000	60,000	20,000	8,000	2,000
У	-10,000	-10,000	8,000	20,000	8,000	2,000	-10,000
W	8,000	-2,000	20,000				
u(w)	0.5	0.25	0.75	0.875	0.625	0.375	0.125

X	60,000	8,000	60,000	60,000	20,000	8,000	2,000
У	-10,000	-10,000	8,000	20,000	8,000	2,000	-10,000
W	8,000	-2,000	20,000	32,000			
u(w)	0.5	0.25	0.75	0.875	0.625	0.375	0.125

X	60,000	8,000	60,000	60,000	20,000	8,000	2,000
У	-10,000	-10,000	8,000	20,000	8,000	2,000	-10,000
W	8,000	-2,000	20,000	32,000	12,000	4,000	-5,000
u(w)	0.5	0.25	0.75	0.875	0.625	0.375	0.125

Utility Curve

Methods of Elicitation

- Preference comparison
 - $[x_i, \alpha_i, y_i] R_i W_i$
- Probability equivalence
 - $[X_{n+1}, \alpha_i, X_0] \sim X_i$
- Value equivalence
- Certainty equivalence
 - $[x_*, 0.5, x_0] \sim x_1, [x_1, x_0] \sim x_2, [x_*, x_1] \sim x_3, \dots$

Utility Functions

- There are functions that describe smooth utility curves
 - Compact expressions
 - These are often easier to elicit than a lot of individual points
- Common
 - Linear
 - Exponential
 - Logarithmic

Exponential Utility

- Kernel
 - e^{-cx}
- Risk attitude
 - c>0, risk averse
 - c<0, risk seeking
 - constant

Logarithmic Utility

Kernel

- $\log(x+b)$
- x > b
- Risk attitude
 - risk averse
 - declining

Scaling

- Utility functions can be scaled to the interval {0,1}
 - Linear transformation

$$u(x) = \frac{k(x) - k(x_0)}{k(x_1) - k(x_0)}$$

Multi-attribute Utility

- What if there is more than one objective?
- Most commonly
 - Assume mutual utility independence
 - Develop utilities separately
 - Combine into single expression
- Goodwin & Wright (2004:123ff)

Cognitive Challenges

- Lotteries are imaginary
- Subtleties of elicitation
 - Gift, purchase, sale, transfer
- Strength of preference for sure outcomes vs. attitudes toward risk

Recommendations

- Pre-analysis preparation phase
 - Motivate decision maker to think carefully about responses
- Use more than one assessment procedure
- Phrase utility questions in terms closely related to original problem

A few more thoughts...

Value vs. utility

"Unknown unknowns"

